

Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes

Yiming Huang; Yujie Zeng; Qiang Wu; Linyuan Lü

{yiming_huang, yujie_zeng}@std.uest.edu.cn, {qiang.wu, linyuan.lv}@uestc.edu.cn

Why?

1.Pairwise networks can't capture higher-order interactions.

2. The expressiveness of classical GNNs is upper bounded by WL test.

3. Higher-order + GNN >> GNN

Expressive Ability

Define the higher-order version WL test (HWL) and simplified higherorder WL test (SHWL)

Theorem2: SHWL with clique complex lifting is strictly more powerful than the WL test.

HiGCN is more expressive than traditional GCNs.

Quantify Higher-order Strength

• Higher-order Strength:

$$S_p = \sum_{k=0}^{K} |\gamma_{p.k}|$$

- The higher-order strength **decreases** with the **increase** of order p.
- The decreasing phenomenon is more prominent in **heterogeneous** graphs.

4. Existing higher-order GNNs are limited by their high **complexity** and **low flexibility**.

Method

1. Flower-petals (FP) model:

• Flower petals adjacency matrices:

 $\tilde{\mathcal{A}}_p = \frac{1}{p+1} D_{p,v}^{-1/2} \mathcal{H}_p \mathcal{H}_p^{\mathsf{T}} D_{p,v}^{-1/2}$

• Flower petals Laplacians:

 $\mathcal{L}_p = I - \tilde{\mathcal{A}}_p$

Theorem1: FP adjacency matrices $\tilde{\mathcal{A}}_p$ and FP Laplacian matrices \mathcal{L}_p are both symmetric positive semidefinite.

 $(0 \leq \lambda \left(\tilde{\mathcal{A}}_p \right), \ \lambda \left(\mathcal{L}_p \right) \leq 1)$

2. HiGCN Model:

 $Y = \left\| \left(\sum_{k=1}^{K} \gamma_{p,k} \tilde{\mathcal{A}}_{p}^{k} X \Theta_{p} \right) W \right\|$

Relation to other GCNs

HiGCN generalizes pairwise graphbased GCNs, showing superiority for exploiting higher-order information.

Model	Convolution Filter	Spectral	Learnable	
GCN (Kipf and Welling 2017)	$(1-\lambda)^K$	Graph Laplacian	×	
APPNP (Gasteiger, Bojchevski, and Günnemann 2019)	$\sum_{k=0}^{K} rac{\gamma^k}{1-\gamma} (1-\lambda)^k$	Graph Laplacian	×	
GPRGNN (Chien et al. 2020)	$\sum_{k=0}^{K} \gamma_k (1-\lambda)^k$	Graph Laplacian	γ_k	
ChebNet (Defferrard, Bresson, and Vandergheynst 2016)	$\sum_{k=0}^{K} \gamma_k \cos\left(k \arccos\left(1-\lambda\right)\right)$	Graph Laplacian	γ_k, K	
SNN (Ebli, Defferrard, and	λ^{K}	Hodge Laplacian	×	
Spreemann 2020)				
SCoNe (Roddenberry, Glaze, and Segarra 2021)	$\lambda^K_{down}, \lambda^K_{up}$	Hodge Laplacian	×	
SCNN (Yang, Isufi, and Leus 2022)	$\sum_{k=0}^{K_1} \gamma_{d,k} \lambda_{down}^k + \sum_{k=0}^{K_2} \gamma_{u,k} \lambda_{up}^k$	Hodge Laplacian	×	
BScNets (Chen, Gel, and Poor 2022)	$f(\lambda_1,\lambda_2,\cdots,\lambda_P; heta)^K$	Block Hodge Laplacian	heta	
HiGCN (Ours)	$\sum_{k=0}^{K} \gamma_{p,k} (1-\lambda_p)^k, p=1,2,\cdots,P$	FP Laplacian	$\gamma_{p,k}$	

Experiments

Superior in node/graph classification & simplicial data imputation

• We modulate the quantity of higherorder structures as in 1k null models, observing that S_2 and HiGCN's accuracy ranking improves as the density of higher-order structures rises.

$ ho_2$	0	10%	20%	30%	40%	50%
MLP	91.45±1.14	91.02±0.98	91.90±0.95	91.18±1.11	91.74±0.92	91.05±0.95
GCN	75.16 ± 0.96	64.36 ± 1.83	64.89±2.16	64.07±1.93	62.92 ± 2.34	64.75 ± 2.16
GAT	78.87 ± 0.86	79.97 ± 1.03	78.89 ± 1.07	78.20 ± 1.20	77.28 ± 1.30	77.93 ± 1.42
ChebNet	86.08±0.96	82.10±1.52	83.08±1.09	79.21±1.55	81.34 ± 1.48	81.41 ± 1.34
BernNet	93.12±0.65	92.10±0.95	92.89 ± 0.92	92.33±1.08	91.54 ± 1.02	91.57 ± 1.21
GGCN	85.81±1.72	85.95 ± 1.42	85.51±1.67	83.84 ± 1.70	91.15 ± 1.02	83.95 ± 1.73
APPNP	90.98±1.64	89.87 ± 1.01	89.31±1.05	89.08 ± 0.98	90.39 ± 1.10	89.57 ± 1.10
GPRGNN	92.95 ± 1.30	86.10 ± 2.76	88.16 ± 1.13	83.05±2.05	84.69±1.77	83.54 ± 2.72
HiGCN	$92.15{\pm}0.73$	$91.70{\pm}1.06$	93.11±0.87	91.64±1.14	$91.93{\pm}0.84$	92.24±1.41
Rank	3	2	1	2	1	1

HiGCN is **highly-scalable**

SCS	Method	10%	30%	6	50%	70%
History	SNN	0.201±0.01	$3\ 0.354\pm 0$	0.016 0.4	495 ± 0.002	0.661 ± 0.002
	SGAT	0.180 ± 0.010	$0.330\pm$	0.002 0.4	432 ± 0.016	0.602 ± 0.005
	SGATEF	0.200 ± 0.002	20.340 ± 0	0.017 0.4	454 ± 0.021	0.633 ± 0.012
	HiGCN	0.258±0.004	4 0.438±0	0.002 0.	579 ±0.005	0.666 ±0.009
Geology	SNN	0.265 ± 0.022	$2 0.417 \pm 0$	0.004 0.	.594±0.02	0.704 ± 0.003
	SGAT	0.223 ± 0.004	4 0.345±0	0.030 0.5	599 ± 0.009	0.631 ± 0.008
	SGATEF	0.230 ± 0.002	20.369 ± 0	0.018 0.0	615 ± 0.031	0.682 ± 0.012
	HiGCN	0.463 ±0.012	2 0.565±0	0.007 0.	644 ±0.014	0.708 ±0.002
LP	SNN	0.222±0.02	$1 0.348 \pm 0$	0.008 0.4	496±0.005	0.668±0.003
	SGAT	0.210±0.01	5 0.279±0	0.054 0.4	487±0.022	0.643 ± 0.017
OB	SGATEF	0.223 ± 0.004	4 0.311±0	0.002 0.4	491 ± 0.008	0.678 ± 0.005
Ι	HiGCN	0.385 ± 0.01	1 0.511±0	0.004 0.	587±0.021	0.685±0.002
-	Dataset	PROTEINS	MUTAG	PTC	IMDB-H	B IMDB-M
	RWK	59.6±0.1	79.2±2.1	55.9±0.	.3 N/A	N/A
(GK (k=3)	71.4 ± 0.3	81.4±1.7	55.7±0.	.5 N/A	N/A
	PK	73.7 ± 0.7	76.0 ± 2.7	59.5±2.	.4 N/A	N/A
V	VL kernel	75.0±3.1	90.4 ± 5.7	59.9±4.	.3 73.8±3.9	50.9 ± 3.8
	DCNN	61.3 ± 1.6	N/A	N/A	49.1±1.4	4 33.5±1.4
	DGCNN	75.5 ± 0.9	85.8 ± 1.8	58.6±2.	$.5\ 70.0\pm10.$	9 47.8 ± 10.9
	IGN	76.6±5.5	83.9 ± 13.0	58.5±6.	.9 72.0 \pm 5.5	$5 48.7 \pm 3.4$
	GIN	76.2 ± 2.8	89.4 ± 5.6	64.6±7.	$.0 75.1\pm5.1$	52.3 ± 2.8
	PPGNs	77.2 ±4.7	90.6 ± 8.7	66.2 ± 6.2	.6 73.0 \pm 15.	8 50.5 \pm 3.6
N	atural GN	71.7 ± 1.0	89.4 ± 1.6	66.8 ±1.	.7 73.5 \pm 2.0) 51.3 ± 1.5
	MPSN	76.7 ± 4.6	89.8 ± 5.5	61.8±9.	$.1 \ \underline{75.6} \pm 3.2$	$2 \underline{52.4} \pm 2.9$
	HiGCN	77.0 ± 4.2	91.3 ±6.4	66.2 ± 6.2	.9 76.2 ±5.1	52.7 ±3.5

Conclusion

• New representation

Propose a novel higher-order representation, which can easily model the interactions between different order simplices and is **highly scalable**.

• New model

We propose a higher-order GNN model based on this novel representation with superior expressiveness.

• New perspective

We quantify the strength of higherorder interactions in a **data-driven** manner.

